Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400217, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574234

RESUMO

Cancer is one of the deadliest diseases worldwide. Chemotherapy remains one of the most dominant forms for anticancer treatment. Despite their clinical success, the used chemotherapeutic agents are associated with severe side effect and pharmacological limitations. To overcome these drawbacks there is a need for the development of new types of chemotherapeutic agents. Herein, the chemical synthesis and biological evaluation of dinuclear rhenium(I) complexes as potential chemotherapeutic drug candidates are proposed. The metal complexes were found to be internalized by an energy dependent endocytosis pathway, primary accumulating in the mitochondria. The rhenium(I) complexes demonstrated to induce cell death against a variety of cancer cells in the micromolar range through apoptosis. The lead compound showed to eradicate a pancreatic carcinoma multicellular tumor spheroid at micromolar concentrations.

2.
Dalton Trans ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652088

RESUMO

Cancer is considered as the biggest medicinal challenge worldwide. During a typical treatment, the tumorous tissue is removed in a surgical procedure and the patient further treated by chemotherapy. One of the most frequently applied drugs are platinum complexes. Despite their clinical success, these compounds are associated with severe side effects and low therapeutic efficiency. To overcome these limitations, herein, the synthesis and biological evaluation of Cu(II) terpyridine complexes as chemotherapeutic drug candidates is suggested. The compounds were found to be highly cytotoxic in the nanomolar range against various cancer cell lines. Mechanistic insights revealed that the compounds primarily accumulated in the cytoplasm and generated reactive oxygen species in this organelle, triggering cell death by apoptosis. Based on their high therapeutic effect, these metal complexes could serve as a starting point for further drug development.

3.
ACS Nano ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635910

RESUMO

Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.

4.
J Med Chem ; 67(2): 1336-1346, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183413

RESUMO

Due to cell mutation and self-adaptation, the application of clinical drugs with early epidermal growth factor receptor (EGFR)-targeted inhibitors is severely limited. To overcome this limitation, herein, the synthesis and in-depth biological evaluation of an erlotinib-platinum(II) complex as an EGFR-targeted anticancer agent is reported. The metal complex is able to self-assemble inside an aqueous solution and readily form nanostructures with strong photophysical properties. While being poorly toxic toward healthy cells and upon treatment in the dark, the compound was able to induce a cytotoxic effect in the very low micromolar range upon irradiation against EGFR overexpressing (drug resistant) human lung cancer cells as well as multicellular tumor spheroids. Mechanistic insights revealed that the compound was able to selectively degrade the EGFR using the lysosomal degradation pathway upon generation of singlet oxygen at the EGFR. We are confident that this work will open new avenues for the treatment of EGFR-overexpressing tumors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Platina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
5.
Adv Sci (Weinh) ; 11(4): e2300806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37166035

RESUMO

Poor immunogenicity seriously hampers the broader implementation of antitumor immunotherapy. Enhanced immunogenicity capable of achieving greater antitumor immunity is urgently required. Here, a novel polymer that contains hydrophobic ferrocene (Fc) units and thioketal bonds in the main chain, which further delivered a prodrug of oxaliplatin and artesunate, i.e., Artoxplatin, to cancer cells is described. This polymer with Fc units in the nanoparticle can work as a polyigniter to spark the peroxide bonds in Artoxplatin and generate abundant reactive oxygen species (ROS) to kill cancers as nanobombig for cancer therapy. Moreover, ROS can trigger the breakdown of thioketal bonds in the polymer, resulting in the biodegradation of the polymer. Importantly, nanobombig can facilitate the maturation of dendritic cells and promote the activation of antitumor immunity, through the enhanced immunogenic cell death effect by ROS generated in situ. Furthermore, metabolomics analysis reveals a decrease in glutamine in nanobombig -treated cancer cells, resulting in the upregulation of programmed death ligand 1 (PD-L1). Consequently, it is further demonstrated enhanced tumor inhibitory effects when using nanobombig combined with anti-PD-L1 therapy. Overall, the nanosystem offers a rational design of an efficient chemo-immunotherapy regimen to promote antitumor immunity by improving tumor immunogenicity, addressing the key challenges cancer immunotherapy faced.


Assuntos
Antígeno B7-H1 , Compostos Ferrosos , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Espécies Reativas de Oxigênio , Metalocenos , Neoplasias/tratamento farmacológico , Polímeros
6.
BME Front ; 4: 0024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849670

RESUMO

Ru(II) polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical, photochemical, and biological properties. Despite their promising therapeutic profile, the vast majority of compounds are associated with poor water solubility and poor cancer selectivity. Among the different strategies employed to overcome these pharmacological limitations, many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II) polypyridine complexes into nanoparticles. This article highlights recent developments in the design, preparation, and physicochemical properties of Ru(II) polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.

7.
ACS Appl Bio Mater ; 6(11): 4791-4804, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862269

RESUMO

Cancer treatment is a crucial area of research and development, as current chemotherapeutic treatments can have severe side effects or poor outcomes. In the constant search for new strategies that are localized and minimally invasive and produce minimal side effects, photodynamic therapy (PDT) is an exciting therapeutic modality that has been gaining attention. The use of theranostics, which combine diagnostic and therapeutic capabilities, can further improve treatment monitoring through image guidance. This study explores the potential of a theranostic agent consisting of four Gd(III) DTTA complexes (DTTA: diethylenetriamine-N,N,N″,N″-tetraacetate) grafted to a meso-tetraphenylporphyrin core for PDT, fluorescence, and magnetic resonance imaging (MRI). The agent was first tested in vitro on both nonmalignant TIB-75 and MRC-5 and tumoral CT26 and HT-29 cell lines and subsequently evaluated in vivo in a preclinical colorectal tumor model. Advanced MRI and optical imaging techniques were employed with engineered quantitative in vivo molecular imaging based on dynamic acquisition sequences to track the biodistribution of agents in the body. With 3D quantitative volume computed by MRI and tumoral cell function assessed by bioluminescence imaging, we could demonstrate a significant impact of the molecular agent on tumor growth following light application. Further exhaustive histological analysis confirmed these promising results, making this theranostic agent a potential drug candidate for cancer.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Medicina de Precisão , Distribuição Tecidual , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
8.
Nat Commun ; 14(1): 5350, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660174

RESUMO

Tumor metastases are considered the leading cause of cancer-associated deaths. While clinically applied drugs have demonstrated to efficiently remove the primary tumor, metastases remain poorly accessible. To overcome this limitation, herein, the development of a theranostic nanomaterial by incorporating a chromophore for imaging and a photosensitizer for treatment of metastatic tumor sites is presented. The mechanism of action reveals that the nanoparticles are able to intervene by local generation of cellular damage through photodynamic therapy as well as by systemic induction of an immune response by immunotherapy upon inhibition of the mTOR signaling pathway which is of crucial importance for tumor onset, progression and metastatic spreading. The nanomaterial is able to strongly reduce the volume of the primary tumor as well as eradicates tumor metastases in a metastatic breast cancer and a multi-drug resistant patient-derived hepatocellular carcinoma models in female mice.


Assuntos
Neoplasias Hepáticas , Fotoquimioterapia , Feminino , Animais , Camundongos , Medicina de Precisão , Transdução de Sinais , Serina-Treonina Quinases TOR , Imunoterapia
9.
Inorg Chem ; 62(38): 15510-15526, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708255

RESUMO

Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Ligantes , Albumina Sérica , Maleimidas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química
10.
Biomaterials ; 301: 122212, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37385136

RESUMO

Melanoma represents the most fatal form of skin cancer due to its resistance mechanisms and high capacity for the development of metastases. Among other medicinal techniques, photodynamic therapy is receiving increasing attention. Despite promising results, the application of photodynamic therapy is inherently limited due to interference from melanin, poor tissue penetration of photosensitizers, low loading into drug delivery systems, and a lack of tumor selectivity. To overcome these limitations, herein, the coordination-driven assembly of Ir(III) complex photosensitizers with Fe(III) ions into nanopolymers for combined photodynamic therapy and chemodynamic therapy is reported. While remaining stable under physiological conditions, the nanopolymers dissociated in the tumor microenvironment. Upon exposure to light, the Ir(III) complexes produced singlet oxygen and superoxide anion radicals, inducing cell death by apoptosis and autophagy. The Fe(III) ions were reduced to Fe(II) upon depletion of glutathione and reduction of the GPX4 levels, triggering cell death by ferroptosis. To provide tumor selectivity, the nanopolymers were further camouflaged with exosomes. The generated nanoparticles were found to eradicate a melanoma tumor as well as inhibit the formation of metastases inside a mouse model.


Assuntos
Exossomos , Ferroptose , Melanoma , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Irídio , Compostos Férricos/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Melanoma/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Chem Sci ; 14(25): 7005-7015, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389267

RESUMO

Drug resistance and metastases are the leading causes of death in clinics. To overcome this limitation, there is an urgent need for new therapeutic agents and drug formulations that are able to therapeutically intervene by non-traditional mechanisms. Herein, the physical adsorption and oxidative polymerization of Pt(iv) prodrugs in pore-confined spaces of CaCO3 nanoparticles is presented, and the nanomaterial surface was coated with DSPE-PEG2000-Biotin to improve aqueous solubility and tumor targeting. While the nanoparticle scaffold remained stable in an aqueous solution, it quickly degraded into Ca2+ in the presence of acid and into cisplatin in the presence of GSH. The nanoparticles were found to interact in cisplatin-resistant non-small lung cancer cells by a multimodal mechanism of action involving mitochondrial Ca2+ overload, dual depletion of GSH, nuclear DNA platination, and amplification of ROS and lipid peroxide generation, resulting in triggering cell death by a combination of apoptosis, ferroptosis and immunogenic cell death in vitro and in vivo. This study could present a novel strategy for the treatment of drug-resistant and metastatic tumors and therefore overcome the limitations of currently used therapeutic agents in the clinics.

12.
Angew Chem Int Ed Engl ; 62(22): e202301074, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36961095

RESUMO

The development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep-seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
13.
J Med Chem ; 66(4): 3088-3105, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36752718

RESUMO

Interest in covalent enzyme inhibitors as therapeutic agents has seen a recent resurgence. Covalent enzyme inhibitors typically possess an organic functional group that reacts with a key feature of the target enzyme, often a nucleophilic cysteine residue. Herein, the application of small, modular ReV complexes as inorganic cysteine-targeting warheads is described. These metal complexes were found to react with cysteine residues rapidly and selectively. To demonstrate the utility of these ReV complexes, their reactivity with SARS-CoV-2-associated cysteine proteases is presented, including the SARS-CoV-2 main protease and papain-like protease and human enzymes cathepsin B and L. As all of these proteins are cysteine proteases, these enzymes were found to be inhibited by the ReV complexes through the formation of adducts. These findings suggest that these ReV complexes could be used as a new class of warheads for targeting surface accessible cysteine residues in disease-relevant target proteins.


Assuntos
COVID-19 , Cisteína Proteases , Inibidores de Cisteína Proteinase , Cisteína , Rênio , SARS-CoV-2 , Humanos , Cisteína Proteases/metabolismo , Inibidores Enzimáticos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico
14.
Chem Sci ; 14(6): 1461-1471, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794192

RESUMO

Conventional photodynamic therapy mainly causes a therapeutic effect on the primary tumor through the localized generation of reactive oxygen species, while metastatic tumors remain poorly affected. Complementary immunotherapy is effective in eliminating small, non-localized tumors distributed across multiple organs. Here, we report the Ir(iii) complex Ir-pbt-Bpa as a highly potent immunogenic cell death inducing photosensitizer for two-photon photodynamic immunotherapy against melanoma. Ir-pbt-Bpa can produce singlet oxygen and superoxide anion radicals upon light irradiation, causing cell death by a combination of ferroptosis and immunogenic cell death. In a mouse model with two physically separated melanoma tumors, although only one of the primary tumors was irradiated, a strong tumor reduction of both tumors was observed. Upon irradiation, Ir-pbt-Bpa not only induced the immune response of CD8+ T cells and the depletion of regulatory T cells, but also caused an increase in the number of the effector memory T cells to achieve long-term anti-tumor immunity.

15.
Angew Chem Int Ed Engl ; 62(21): e202300662, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36807420

RESUMO

Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Morte Celular , Imunoterapia
16.
Chembiochem ; 24(14): e202300079, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853559

RESUMO

Clinical imaging techniques are widely used to detect, locate, and track the growth or shrinkage of cancerous tumors. Although these techniques have shown impressive results, they often come with health risks due to the use of toxic contrast agents or ionizing radiation. To address these limitations, research efforts have been focused on the development of new imaging techniques. Among the emerging medicinal methods, photoacoustic imaging is receiving much attention. This method effectively combines the most important benefits of both ultrasound and fluorescence imaging, while minimizing their respective drawbacks via a light-in and ultrasound-out approach. This review article focuses on the fundamental concept, recent advances, and strategies for novel contrast agents based on molecular metal complexes or metallic nanoparticles for use in photoacoustic imaging.


Assuntos
Complexos de Coordenação , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Meios de Contraste , Técnicas Fotoacústicas/métodos , Nanopartículas Metálicas/toxicidade , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem
17.
Chem Sci ; 14(3): 711-720, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36741526

RESUMO

Infections of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have triggered a global pandemic with millions of deaths worldwide. Herein, the synthesis of functionalized Re(i) tricarbonyl complexes as inhibitors of the SARS-CoV-2 main protease, also referred to as the 3-chymotrypsin-like protease (3CLpro), is presented. The metal complexes were found to inhibit the activity of the enzyme with IC50 values in the low micromolar range. Mass spectrometry revealed that the metal complexes formed a coordinate covalent bond with the enzyme. Chiral separation of the enantiomers of the lead compound showed that one enantiomer was significantly more active than the other, consistent with specific binding and much like that observed for conventional organic small molecule inhibitors and druglike compounds. Evaluation of the lead compound against SARS-CoV-2 in a cell-based infection assay confirmed enantiospecific inhibition against the virus. This study represents a significant advancement in the use of metal complexes as coordinate covalent inhibitors of enzymes, as well as a novel starting point for the development of novel SARS-CoV-2 inhibitors.

18.
ACS Med Chem Lett ; 14(1): 75-82, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36655124

RESUMO

Among the most important influenza virus targets is the RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, which is a critical component of the viral replication machinery. To inhibit the activity of this metalloenzyme, small-molecule inhibitors employ metal-binding pharmacophores (MBPs) that coordinate to the dinuclear Mn2+ active site. In this study, several metal-binding isosteres (MBIs) were examined where the carboxylic acid moiety of a hydroxypyridinone MBP is replaced with other groups to modulate the physicochemical properties of the compound. MBIs were evaluated for their ability to inhibit PAN using a FRET-based enzymatic assay, and their mode of binding in PAN was determined using X-ray crystallography.

19.
Chembiochem ; 24(4): e202200647, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36479913

RESUMO

An increasing number of novel Ru(II) polypyridyl complexes have been successfully applied as photosensitizers (PSs) for photodynamic therapy (PDT). Despite recent advances in optimized PSs with refined photophysical properties, the lack of tumoral selectivity is often a major hurdle for their clinical development. Here, classical maleimide and versatile NHS-activated acrylamide strategies were employed to site-selectively conjugate a promising Ru(II) polypyridyl complex to the N-terminally Cys-modified Bombesin (BBN) targeting unit. Surprisingly, the decreased cell uptake of these novel Ru-BBN conjugates in cancer cells did not hamper the high phototoxic activity of the Ru-containing bioconjugates and even decreased the toxicity of the constructs in the absence of light irradiation. Overall, although deceiving in terms of selectivity, our new bioconjugates could still be useful for advanced cancer treatment due to their nontoxicity in the dark.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/efeitos da radiação , Rutênio/farmacologia , Bombesina , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico
20.
Adv Mater ; 35(8): e2210267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36484099

RESUMO

Tumor metastases and reoccurrences are considered the leading cause of cancer-associated deaths. While highly efficient treatments for the eradication of primary tumors have been developed, the treatment of secondary or metastatic tumors remains poorly accessible. Over the past years, compounds that intervene through the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway against tumor metastases have emerged with potential for clinical development. While interferon stimulatory DNAs have demonstrated activation of this pathway, these compounds are associated with poor bioavailability, poor stability, and poor cancer selectivity, hindering their use for therapeutic applications. Herein, the encapsulation of a highly potent chemotherapeutic platinum(II) complex and the incorporation of interferon stimulatory DNA strands for activation of the cGAS-STING pathway into multimodal tetrahedral DNA nanostructures (84bp-TDNISD/56MESS ) for combined chemotherapy and immunotherapy is reported. It is found that 84bp-TDNISD/56MESS can work as not only a drug delivery carrier for highly potent toxins, but also an immunostimulant agent that can activate the STING pathway for antitumor immune responses. In a mouse breast cancer model, the DNA nanostructure is found to nearly fully eradicate primary as well as secondary/metastatic tumors, hence demonstrating its potential clinical translational value.


Assuntos
Interferons , Neoplasias , Camundongos , Animais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , DNA , Neoplasias/terapia , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...